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A theoretical analysis of the walls of orientation induced in nematic liquid crystal by inhomogeneous
surfaces is presented. The case in which the nematic liquid crystals may be approximated by a semi-
infinite medium is considered for different kinds of inhomogeneities. The same analysis is extended to a
slab of nematic liquid crystal of definite thickness. The influence of the thickness of the sample on the
width of the wall of orientation is evaluated in the frame of strong- and weak-anchoring situations. The
threshold field for the Fréedericksz effect for nematic samples characterized by uniform easy axis but
nonuniform anchoring energy on the experimental determination of the anchoring energy strength is dis-

cussed.

PACS number(s): 61.30.Gd, 61.30.Jf, 02.90.+p

I. INTRODUCTION

The elastic theory of nematic liquid crystals (NLC) has
been formulated long ago by Ericksen [1] and Leslie [2],
and described in many textbooks [3-5]. This theory is
mainly applied to the study of one-dimensional problems,
in which all the physical quantities depend only on one
coordinate [6]. In this frame it is possible to describe the
well known Fréedericksz transition [7] and a few other
structures useful for practical applications [6]: among
others, the supertwisted nematic cell [8] and the hybrid
aligned nematic cell [9]. The first arrangement is very
important for display applications [10]. It is relevant to a
slab of NLC, in which the nematic orientation is planar
on the two orienting surfaces, but the relative angle of
one surface with respect to the other one is larger than
/2. The second arrangement corresponds to a NLC cell
whose nematic orientation is planar on one of the sur-
faces (i.e., the director is parallel to the surface) and
homeotropic on the other one (i.e., the director is normal
to the other surface). It has been important in determin-
ing different NLC physical parameters, like the flexoelec-
tric coefficients [11-13] or the anchoring energy [14,15].

Recently elastic theory has been applied to analyze
two-dimensional periodical patterns induced by external
fields [16-20], following the pioneering paper by Lonberg
and Meyer [21]. However, in this paper the surface treat-
ment was thought to be uniform. An extension of the
elastic theory to two-dimensional problems has been car-
ried out by Kléman [22] in order to describe the disclina-
tion in NLC. In his work, Kléman was mainly interested
in surface defects in the absence of external fields. He an-
alyzed, in particular, the structure and the width of the
disclination walls. More recently [23-25], some atten-
tion has been given to the NLC orientation induced by
surface nonhomogeneities. This has been done to im-
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prove the definition of the surface energy [24] in a contin-
uum description and to connect the anchoring energy ex-
perimentally detected with the random distribution of
easy axes [25]. In this paper, the analysis of Ref. [25] is
extended in order to describe walls of NLC orientation
induced by a sharp variation of surface treatment. We
also analyze the threshold for the Feéedericksz transition
in NLC samples, for which the surface treatment is
characterized by a variable anchoring energy.

Our paper is organized as follows. In Sec. II the walls
of NLC orientation in semi-infinite samples are discussed.
This problem is simple from an analytical point of view,
but a few important conclusions may be easily derived.
In Sec. III the same problem for NLC samples having the
shape of a slab is considered. There the role of the thick-
ness of the sample on the width of the walls of orientation
is discussed. The possibility of experimentally detecting
surface walls is analyzed too. The theoretical determina-
tion of the threshold for the Fréedericksz effect is report-
ed in Sec. IV. There we show that the theoretical thresh-
old is fixed by the lowest anchoring energy. However,
the experimental detectability of this threshold strongly
depends on the spatial extension over which this lowest
anchoring energy is delocalized. The main conclusions of
our paper are stressed in Sec. V.

II. SEMI-INFINITE MEDIUM

Let us consider a semi-infinite medium, limited by the
(x,y) plane placed at z=0. The NLC medium occupies
the z > 0 half space. The NLC direction n is supposed to
be everywhere parallel to the (x,z) plane. The tilt angle ¢
made by n with the z axis is considered y independent.
The surface orientation imposed by the surface treatment
is supposed to be of the kind

P,, x<0

<D(x)= q)z’ X>O,

(1)

and independent of the bulk NLC orientation. This is the
case known as the strong-anchoring situation. The elas-
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tic energy density of a NLC, in the continuum approxi-
mation is given by

f=1K(V¢)*, )

in the one-constant approximation. In (2), K is the Frank
elastic constant. The actual ¢(x,z) profile is obtained by
minimizing the total elastic energy given by

F=[7 [“1K(VYdxdz 3)

per unit length along the y axis. Minimization of (3)
gives, for ¢(x,z),

2 2
9,24, @)
ox oz

hence ¢(x,z) is a harmonic function, whose boundary

conditions are given by Eq. (1). This is the well-known

Dirichlet problem. Simple considerations show that the

solution of (4), assuming on the border z=0 the value

®d(x), is given by

1 po z

( X, Z) = — - -

¢ ﬂ-f_w22+(x__xl)2

In the event in which ®(x) is of the kind (1), simple
calculations give for ¢(x,z) the expression

(®,—
#(x,2)=1(P;+D,)+

D(x")dx’ . (5)

D
arctan

i]. (6)
z

A simple inspection shows that ¢(x,z) is a harmonic
function satisfying the boundary conditions (1). Figure
1(a) shows ¢(x,z) vs x and z. In this case, the “wall” of
nematic orientation has infinite thickness, as expected.
In fact, the wall is the region in which ¢(x,z) strongly
differs from ®, or ®,. For the problem we are analyzing
it is defined by ¢(x,z)=®;+¢, if x<O0, and
é(x,z)=,—¢, if x >0, where € depends on the accuracy
by means of which we want to define the nonuniform part
of ¢(x,z), i.e., the walls of orientation. By using Eq. (6),
the above reported conditions give x _ = —(cot €)z, for
x <0, and x , =(cot €)z, for x >0, for the border of the
uniform distribution of ¢(x,z). The thickness of the wall,
defined as x . —x _, is then 2(cot €)z. It tends to infinity
when z— o, as previously stated. This is shown in Fig.
1(b), where different €’s are shown.

The elastic energy density of the distortion given by (6)
is
2

1
—, 7
p 7

D,— P,
f=1K(V¢)*=1K [——ﬂ—

where r2=x2+z% As is well known, f diverges near to
x=z=0. At this point there is a disclination which is
shown in Fig. 1(c). The thickness of the wall on the sur-
face is zero. This is due to the hypothesis of strong an-
choring. Moving from the surface disclination to z— oo,
the orientation wall becomes larger and larger, and the
elastic energy density tends rapidly to zero

Another important situation is the one characterized
by a surface easy-axis distribution of the kind
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FIG. 1. Tilt angle distribution ¢(x,z) [(a) and (b)] and energy
density distribution (c) vs x and z. The nematic sample is ap-
proximated with a halfspace (z >0). The easy-axis distribution
is a step function of the kind ®(x <0)=®, and ®(x >0)=I,.
The anchoring energy is assumed infinite. (a) shows that an
abrupt variation of ¢(x,z) is localized near x =0 for z—0. In
the opposite limit of z— o the variation of ¢(x,z) is smooth.
(b) shows different “walls” for different € parameters. (c) shows
that the energy density of the tilt angle distribution for the con-
sidered case diverges for (x,z)—0, indicating that in the origin
of our Cartesian reference frame is localized a dislocation.
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A
D, x<——
1> X D)
A A
P(x)=1P,, ——<x<—
(x) 2 y X< (8)
A
D, x>—.
1, X 2

This situation refers to a surface nearly homogeneous, the
easy axis forming the angle @, with the z axis and
presenting a nonhomogeneity of thickness A, whose easy
axis is ®@,. In this case, Eq. (5) gives

A
(D, —®,) 5 X

d(x,z2)=d,+ arctan

-+arctan 9)

Very far from the surface (i.e., for z— ), ¢(x,z) >P,.
Now the surface thickness of the wall of the nematic
orientation is A, and it tends to zero very far from the
orientating surface. ¢(x,z) given by (9) is shown in Fig.
2(a). We can now apply the criterion introduced before
to define the wall. It is now the region in which ¢(x,z)
strongly differs from ®,. By using Eq. (9), the border of
the wall is defined by

A A
o,—®, —+x ——X
arctan

+arctan

. A .
where € has the same meaning as before. For x > Y this

equation can be rewritten as

A ’ A ’
x2+ |z— 2 = 2
tan __mEe sin __TE
(D2—¢1 ®2_¢]

A similar equation is obtained for x < —A/2. This rela-
tion shows that the border of the wall is a circle of radius

A/2 CSC[WE/(¢2—¢‘)] >

whose center is localized in

(0,A/2cot[me/P,—D,]) .

In Fig. 2(b) different walls corresponding to different €’s
are shown.

The elastic energy density for the distortion given by
9) is

o,—o, |’

™

A2
R%RZ

) (10)
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FIG. 2. As in Fig. 1 with the easy-axis distribution
®O(x)=P,, |x|>A/2 and ®(x)=®,, |x| <A/2. (a) shows that
é(x,z) changes very much near x =+A/2 and z—0. In the op-
posite limit of z— o, ¢(x,z)—P,. (b) shows the border of the
wall of orientation for different € parameters. (c) gives the trend
of the elastic energy density. It diverges for x=+A/2 and z=0
and tends to zero for large z. In this case, in (£A/2,0) are
present two dislocations. x and z are given in units of A.
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where R% =z2+(x+A/2)%. There are now two disclina-
tions localized in (£ A /2,0). The elastic energy density is
proportional to (®,—®,)* and A% The trend of f vs x
and z is shown in Fig. 2(c), from which the position of the
dislocation is clearly visible, coinciding with the diver-
gent points of f.

A final situation that has some physical relevance is the
one in which the surface tilt angle passes continuously
from ¢, (at x >—») to ¥, (at x>+ o). A simple
profile is

A 1, x
¢(x,z)=%(<l>1+<l>2)+; [?+X arctan

The thickness of the wall of orientation is A on the
orienting surface and tends to infinity for z— o, as in the
case for which the surface orientation is given by (1).

The case considered now gives us the opportunity to
extend to the weak-anchoring case the results obtained
above. In this situation the total elastic energy per unit
length along the y axis is given by

F=[7 [“1K(V,) dx dz

+[°
in the above mentioned one-constant approximation. In
(13) the second term takes into account the finite anchor-
ing energy. It is written in the Rapini-Papoular form
[26]. In it, ¢(x,0) is the actual surface tilt angle, whereas
®(x) is the easy axis. The minimization of (13) gives now

LW [¢(x,0)—D(x)]%dx (13)

again Eq. (4) for the bulk, ie., for —o <x <,
0<z < o, with the boundary condition
—K [%‘zﬁ ] + W[4(x,00—D(x)]=0 . (14)
z=0

Equation (14) is usually rewritten by introducing the ex-
trapolation length L =K /W:

3¢

¢(x,0)—P(x)=L
az

(15)

z=0

By taking into account that in this situation the actual
surface angle is ¢(x,0), Eq. (5) has to be rewritten as

o(x, z)——f"o

—w22+(x

By means of (16) the boundary condition (15) is written as

40", 00dx" (16)

© $(x',0)dx’
,0)=P(x)+— 17
$(x,0)=D(x) f_w i an
Equation (17), by observing that (x'—x)72

=—d(x'—x)"'/dx’, can be put in the form

2123
A
P, x<——
1> X 2
X A A
d(x)= —, ——<x<-— 1
(x) <I>,,,+AA , ) x 2 (11
A
o ’ >,
2 x 2
where ®,, =1(P,+®P,) and A=P,—P,. For this case
Eq. (5) gives
A 2
A—x 224+ | ——x
2
2 |arctan 2 +iln
A 2A 2
22+ | +x

(12)

bx,0=(x)+ L= [* L _d8xL0) 40 g
TY-ox'—x dx

Equations (17) or (18) are Freedholm equations of second
kind. In the hypothesis in which L is a small quantity,
they can be solved in an approximated manner, giving

© 1 d<1>(x )

(19)
—wx'—x dx'

$(x,0)=0(x)+L

T

at the first order in L. Of course, expression (19) is valid
only for

_L = 1 d@(x)
elx) vf—oox’—x dx'

since the second term of (19) is a small perturbation to
the first order solution. We can use Eq. (19) for the case
in which the distribution of the surface easy axes is given
by (11). By substituting (11) into (18), simple calculations
give

dx'<1, (20)

LA

e(x)=£ln 2 (21)
TA A
**y

€(x) given by (21) represents the correction to ®(x), the
easy axis. Hence, in the regions in which (20) holds, the
actual surface tilt angle is ®(x)+¢€(x). We observe that
condition (20) gives, by using (21),

(22)

for x > A/2. The quantity 2x, may be interpreted as the

thickness of the surface wall of orientation. From (22) we
derive that

xp—>AL for A—O0, (23)
T

which corresponds to the situation characterized by the
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surface distribution of easy axes given by (1). Equation
(23) states that in this case the thickness of the surface
wall of orientation is of the order of the extrapolation
length, as expected with a naive analysis of the problem.
The result (23) may be also derived directly from Eq.
(20), taking into account that (1) may be rewritten as

P(x)=d,+AE(x), (24)

where E (x)=0 for x <0 and 1, for x >0 is the Heaviside
step function. In this case, dE(x)/dx =6(x), where &(x)
is the Dirac’s delta function and Eq. (20) gives immedi-
ately (23). Another interesting physical limit is L —0,
which corresponds to strong anchoring. In this case, Eq.
(22) gives

P P —»—2— y
i.e., the thickness of the surface wall coincides with the
region in which ®(x) changes. The same kind of calcula-
tion can be performed for the case in which ®(x) is given
by (8). Following step by step the above procedure, one
obtains

ex)=—-£L A 25)
A A
—_— + —_—
2 2 T
The condition (20) gives now
A AL 172
X, = ‘:2— 1 +47—T—1_\_ y (26)
which in the L /A <1 limit is equivalent to
A | AL
=S4+ 8= 27
»=7 - 27

i.e., the thickness of the surface wall is the one corre-
sponding to the strong-anchoring situation plus a quanti-
ty of the order of the extrapolation length.

By following the previous procedure it is possible now
to consider the case in which ®(x) is given by (8), but the
anchoring energy, whose extrapolation length is L, is
finite. By means of Eq. (15) or Eq. (19), one derives

(P,—D,) LA
3 (28)

e(x)=—
T

for the variation of the surface tilt angle connected with
the weak anchoring. The condition (20) now gives

xp=%—%(¢2~¢l)L 29)
is the hypothesis of L /A <1, as supposed. The thickness
of the surface wall is then

2
2xP=A‘—;(¢2"‘I>1)L 5 (30)

i.e., it is reduced by a quantity of the order of L. This re-
sult is physically meaningful: the homogeneous regions
characterized by @, squeeze the inhomogeneous part
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characterized by ®,.

In concluding this section, we stress that for a semi-
infinite sample characterized by ®, (x <0) and by ¥,
(x >0) and strong anchoring, the thickness of the wall of
orientation is zero on the surface and it tends to infinity
far from the surface. On the contrary for the weak-
anchoring situation, characterized by an extrapolation
length L, the surface thickness of the wall is zero and it
tends again to infinity far from the surface. In other
physical situations having a surface wall of orientation
imposed by the surface treatment, we have shown that
the weak anchoring only modifies the surface thickness,
increasing it by a quantity proportional to the extrapola-
tion length. However, at infinity the thickness of the wall
remains zero or infinite according to the surface treat-
ment. Consequently, it seems important to us to extend
the preceding calculations to a NLC sample having the
shape of a slab.

III. WALLS OF ORIENTATION IN A SLAB
OF THICKNESS d

In this section the analysis of Sec. II will be extended
to a sample of thickness d. The total elastic energy per
unit length along the y axis is now

_ (d2 e )
F=["" [” iK(V¢)dxdz (31

in the strong-anchoring case and in the one-constant ap-
proximation. By minimizing (31) one obtains again Eq.
(4), which has to be solved with the boundary condition

d
X, —

¢ 13

=®,(x), and ¢

x,-—% l=<1>4x), (32)

where @ (x) and ®_(x) are the easy axes on the upper
and lower surfaces, respectively. In a previous paper, the
general solution of Eq. (4) satisfying the boundary condi-
tions (32) has been given in terms of Green’s functions
[25]. Ttis

$x2)= [ 716 (x'—x, 2P (x")
+G_(x'"—x,z2)®_(x")]dx’, (33)
where
cos | Xz
, 1 d
Gi(x —x,z)—g - —
cosh g(x'—x) Fsin i
(34)

Let us suppose that the problem under consideration is
symmetric, i.e.,
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D (x)=P_(x) . (35)
This implies, as is easily shown, that

o(x,—z)=d(x,2) . (36)

(b)

2z/x

FIG. 3. Tilt angle distribution ¢(x,z) [(a) and (b)] and energy
density distribution (c) vs x and z. The nematic sample is a slab
of thickness d, characterized by the same easy-axis distribution
of Fig. 1. The two surfaces are supposed to be exactly in phase
(a). The variation of ¢(x,z) is localized near x =0. The width
of the wall of orientation is of the order of d, as shown in (b).
The energy density diverges at (0,+d /2), where two dislocation
are localized (c). x and z are given in units of d.

2125
In this case, Eq. (30) becomes

+ o
¢(x,2)= [ T[6,(x'—x,2)+ G _(x'—x,2)]®(x")dx’" .

(37

A simple inspection, by using (34), shows that

G (x'—x,—2)+G_(x'—x,—2)

=G ,.(x'"—x,2)+G_(x'—x,z),

as required. It is possible now to analyze the situation in
which ®(x) is of the same kind as (1). This refers to two
identical surfaces characterized by a sharp variation of
the easy axis and placed in an exact recorder. By substi-
tuting (1) in (37) one obtains for the tilt angle distribution
in the NLC sample the expression

#(x,2)="1(®, + )

sinh

X
d
—17-_2 b
d

D, — P,

™

arctan (38)

Ccos

which generalizes the previous Eq. (6) to a sample of
finite thickness. Equation (38) shows that the thickness
of the wall in surface is zero as a consequence of the
strong-anchoring hypothesis. On the contrary, in the
“bulk,” i.e., in the middle of the sample (at z=0), the
thickness of the wall is of the order of the thickness of the
sample d. The trend of ¢(x,z) given by (38) vs x and z is
shown in Fig. 3(a). In Fig. 3(b) the wall of orientation is
shown. By using (38), simple calculations give for the
elastic energy density the expression

(39)

2
D,— P, 1
d 2

mZ

cos
d

+sinh?
] sin d

>
‘n'xl

which diverges for z=1d /2 and x =0, as expected, be-
cause in these two points two singularities are localized.
f given by (39) is shown in Fig. 3(c). From this figure one
derives that the energy density is mainly localized around
the straight line x =0 presenting for +d /2 two divergent
points.

Let us consider now the situation in which ®(x) is
given by (8). This case refers to two identical surfaces
characterized by the easy axis ®,, presenting a nonhomo-
geneity of thickness A, exactly in phase. Now the general
expression (37) gives
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FIG. 4. The situation of Fig. 2 is extended to a nematic slab of thickness d formed by two identical surfaces exactly in phase. [(a)
and (b)] refer to ¢(x,z) vs x and z for different values of A. For A <d there is a wall of orientation whose thickness, in the bulk, is of
the order of 2d For A >d there are two walls of orientation clearly separated. (c) shows the energy density. It diverges now in
(£A /2, £d /2), in which the dislocations are localized. x, z, and A are given in units of d.
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FIG. 4. (Continued).
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It is important to note that the maximum value of ¢(x,z)
is reached for x =z =0. It is given by

TA
sinh2d

®,—P,)
arctan

(
$(0,0)=d,+2 . 41)

It is of the order of @, only for A~d. For A <<d from
(41) one obtains

A A

7’ 4 <1, (42)
i.e., ¢(0,0) strongly differs from ®,. The trend of ¢(x,z)
vs x and z for different A is shown in Fig. 4(a), whereas
the walls of orientation are reported in Fig. 4(b). From
this last figure one easily derives that the width of the
wall of orientation is of the order of A+2d. In Fig. 4(c)
the distribution of the elastic energy density for the same
values of A is drawn. We underline that a better
definition of the wall requires the analysis of the elastic
energy density instead of the tilt angle distribution, be-
cause, in fact, this quantity strongly differs from zero in a
well defined region that can be termed the “wall of distri-
bution energy.” A simple analysis shows that the two
definitions of the wall of orientation are indeed
equivalent, as expected.

A practical question arises: When is it possible experi-
mentally to detect a wall of orientation of the kind de-
scribed before? The optical experimental techniques are
sensitive to the average of the square of the tilt angle, i.e.,
to

([$(x,2)—D®,]*)
:_1_ 172
ldY-1n

where the x average is performed over /, which is con-
nected with the diameter of the light beam. This average
depends on [®,—®,]? and A and d as shown in Fig. 5.
This figure shows that for A>d, ([#(x,z)—®,]*) has a
linear dependence with respect to A. However, for small
A, {[¢(x,z)—®,]*) is nearly quadratic in A. In particu-
lar,

{3([¢p(x,2)—D,]*) /0A} A=o=0 .

¢(0’0)=¢l+(¢2~(bl)

fd/z [¢(x,2)— @, ]’dx dz , (43)
—d/2

Consequently, the optical experimental technique allows
us to detect a wall of orientation only for A of the order
of d. In the opposite limit it is very hard to visualize sur-
face nonhomogeneities. This observation is important for
the result that will be obtained in the next section, where

J
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¢ 12> (@rb. units)

<l ¢(x.2)

A/d

FIG. 5. Trend of detected birefringence of a sample present-
ing a surface nonhomogeneity of the kind ®(x)=®,, for
[x|<A/2, and ®(x)=®,, for |x|>A/2. For A>d the
birefringence is proportional to A, whereas for A <d it is nearly
quadratic. The wall is easily detected only for A>d.

the Fréedericksz transition in nonhomogeneous surfaces
will be analyzed.

We can now extend the preceding calculations to the
weak-anchoring case. If we substitute Eq. (38) in Eq.
(19), it is easy to find that
__ (@ ®) L , (44)

T ™ ]

d

sinh

for the case in which the slab is characterized by surface
tilt angles given by (1). The condition (20) gives

P,—9,
x,~——L . 43)
m
Consequently, the thickness of the surface wall is
P,—9,

m

2x,~2

, L, (46)

i.e., of the order of the extrapolation length, independent
of the thickness of the sample.

Let us consider, finally, the situation for which the sur-
face tilt angles are given by (8). The same procedure fol-
lowed above gives

sinh | Z-(A—x) | +sinh | Z(A+x)

d ®,— P, d d
e|x,~ [=L 47)

2 T - .

sinh F(A—x) sinh F(A-I—x)
From Eq. (47) one derives for the thickness of the surface wall the expression
o,— P
2x,=A—2|—— |L, 48)
T




0.5

50 WALLS OF ORIENTATION INDUCED IN NEMATIC-LIQUID- . . .

2129

>
I

0.26

05

|

025

-

0.5
-5

05

0.25

0.25

0.5

-5

05

0.25

0.25

0.5

-5

FIG. 6. As in Fig. 3, where the surfaces are out of phase of A. (a) is the ¢(x,z) distribution and (b) is the wall of orientation. In
the bulk its width is of the order of d. (c) is the energy density distribution diverging in (0, —d /2) and (A,d /2), in which the disloca-
tions are located. The curves are drawn for different A. For A smaller than d, the width of the wall of orientation is of the order of

the thickness of the sample. On the contrary, the A > d, the width is of the order of A. x, z, and A are given in units of d.
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i.e., again the thickness of the surface wall is reduced by a quantity of the order of the extrapolation length.
The surfaces we have considered until now are equal and placed exactly in phase. It is possible to analyze briefly the
case in which

P, x<A
P, (x)= &

®,, x<0
., x>A Y- e x50, 49

FIG. 6. (Continued).
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relevant to two identical surfaces characterized by easy axes of the kind (1) displaced, one with respect to the other, by
A. By using the general equation (33), one obtains for the tilt angle distribution,

((DZ—' 1 1—sin 7 tanh———(A x)— |[1+sin 7 ta nhﬁ
d(x,2)=1(P,+P,)— arctan— (50)
cos 1+tanh—(A x)tanhﬁ
[
The trend of ¢(x,z) vs x and z for different A is reported o pdf2 €, ,
in Fig. 6(a). The delocalization of the orientation wall is F= f - f i 1K(V)— gE 2¢* |dx dz
shown in Fig. 6(b). For A <d, the thickness of the wall is ® /
of the order of d, whereas for A very large with respect to to 1 ) d
d it is of the order of A+2d. Figure 6(c) exhibits the elas- + f Y W (x)¢” |x, 5 dx
tic energy density vs x and z for different values of the pa-
rameter A. tw 1
+ [ Tow_g? x,-— dx (53)
IV. FREEDERICKSZ TRANSITION

FOR NONHOMOGENEOUS ANCHORING ENERGY

The Fréedericksz transition in a uniform sample is a
well known effect described in many textbooks. It refers
to a transition of orientation in NLC induced by an exter-
nal field. In a particular situation of symmetry this tran-
sition of order is a second order phase transition for
which the control parameter is the applied field and the
order parameter the maximum value of the tilt angle
[2-6]. The Fréedericksz transition has been analyzed in
situations of strong and weak anchoring only for uniform
samples. For a NLC slab of thickness d having easy
direction parallel to the z axis (homeotropic alignment),
submitted to an electric field parallel to the z axis, the
threshold for the Fréedericksz effect is given by

172
7K , (51)

E . =2

Cc

o
d

in the strong-anchoring hypothesis, where K is the elastic
constant and &, =g, —¢, the dielectric anisotropy (|| and
1 refer to the NLC direction n). For the considered ex-
perimental arrangement the Fréedericksz effect exists
only for g, <0.

In the case in which the anchoring energy is finite, the
threshold is given by the Rapini-Papoular [26] expression

EC
E

C oo

4_
L

m 4
.

1
T

where L is the extrapolation length, E, the actual field
threshold, and E,. the threshold field for the strong-
anchoring situation defined by (51).

The aim of this section is to generalize Eq. (52) for the
situation in which W= W (x) or L =L (x), but the same
on the two surfaces, i.e., W (x)=W_(x). When the
NLC slab is submitted to an electric field parallel to z, the
total energy per unit length along the y axis is given by

in the limit of small ¢. Equation (53) is written by sup-
posing that the easy axis is parallel to z, but the surfaces
are assumed nonhomogeneous with respect to the an-
choring energy. By minimizing (53) one obtains

—‘ﬁ+—‘ﬁ+x2¢=o R
Ix? 2 2
(54)
for the bulk, with the boundary condition
d d
L _Q 2 l=
+(x) 3z |2=L21_+¢ x,2 0,
% (55)
— —i —
L—(x) 3z ]z=—%+¢ lx, 2 0.

In (54), A2=(—¢,/4nK)E? is the inverse of the well
known dielectric coherence length square [2-6].

It is possible to expand the solution of (54) in plane
waves along the x axis as follows:

$(x,2)= [ " “hik,20e™dk (56)

where h(k,z)=h(—k,z), since ¢(x,z) is a real quantity.
By substituting (56) into (54) one obtains for h (k,z) the
expression

h(k,z)=a(k)e®+B(k)e % | (57
where
k=Vk*—2Az, (58)

and a(k) and B(k) have to be determined by means of the
boundary conditions (55). Calculations similar to those
performed in Ref. [25] give, for the function ¢(x,z) we
are looking for, the expression
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1 + —
¢(x,z)=;f_wdx’ ¢ x’,g— g1(x—x",z) sinh | k z+%
g(x -—x’,z)=f+a0 —— ek x=x"qgk
d - sinh(kd)
—¢ |x',—— |g(x—x",2) |, (60)
2 . - d
sinh |k z—;
(59) (x —x',z)= T eik(x*x’)dk .
82 2=, sinh(kd)

where the new propagators g;(x —x',z) (i=1,2) are
given by

L, (x) o , L d | 4 , , d
y. f_mdx ¢x,2g (x—x")—¢ |x’, >
L_(x) ® ’ ’ d (=) ’ ' d

. f_wdxl(tx,zg (x—x")—¢ |x’, >
where

g M ix —x')=f+we‘k"‘_""1?&8h@dk , (62a)

— o sinh(kd)

_ ® g k
(Nx—x)= [ TTekx—x1_—X__gk . (62b)

& f—w sinh(kd)

The above equations [(54)—(62)] are general and consti-
tute the basic theoretical tool to investigate the
Fréedericksz effect in the weak-anchoring situation when
the anchoring energy is nonuniform. In the particular
case in which W (x)=W_(x) [i.e, L, (x)=L_(x)],

implying o(x,d/2)=¢(x,—d /2) and hence
d(x,z)=¢(x, —z), Egs. (59) can be rewritten as
___]_'__ +oo ’ i I
d(x,z)= . f—‘oo dx'¢ |x, 5 {gi(x—x",z)
—g,(x—x",2)}, (63)

and the boundary conditions assume the form

Lix) f+°°dx'¢ x',—

(+)(
27 —

(g (x—x)—g' Tx—x")]

x,i =0. (64)

+¢ 2

In this simple case, by means of Eq. (62), it is easy to con-
clude that

g(+)(x —x')-—g(_)(x —x')

=— [ 77e®~XF tanh dk . (65)

kd
2

Equation (64) solves our problem. In the case in which
W (x)=W_(x)=W is position independent, ¢(x,d /2)

is expected also to be x independent. In this situation, by
taking into account that [ F%e**~*)dx'=278(x —x'),

4

By substituting expression (59) into the boundary condi-
tions (55), one has

THx—x") | +¢ x5 |=0,
(61)
(+) ’ d —
g M x—x")+¢ x,——2— =0,
I
Eq. (64) gives
Lacot |24 =1, (66)

which is equivalent to Eq. (52) written above. In the case
in which (64) holds, we may rewrite it in the form

d|_Le) prey ] d
S22 |T o oL,
X[g(_)(x —x’)—g(+)(x -x)], (67)
which clearly shows that
g M x—x")—gMx—x")= L%:,)S(x—x’). (68)
From this expression and expression (65), one obtains
27 _s(x—x)=— [ " Te*—Egh |EL ak . (69
Loy —x==[""e kigh |k |dk . (69)

By integrating (69) over x’ and using the integral repre-
sentation of the Dirac § function, it is simple to deduce
L(x)kcot%=l . (70)
This equation states that the threshold is fixed by the
minimum value of the anchoring energy. This result is a
posteriori physically consistent with the definition of
threshold in a sample characterized by weak-anchoring
energy. Consequently, the true theoretical threshold for
the Fréedericksz effect in a NLC sample having nonho-
mogeneous anchoring energy is fixed by the lowest value
of this parameter. This fact may have important conse-
quences for the experimental determination of the an-
choring energy by means of the Fréedericksz effect.
However, as we have seen in Sec. IIl, a surface orienta-
tion inhomogeneity is experimentally detectable only if
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the region over which it appears is of the same order of
the thickness of the sample. Consequently, only if the
lowest anchoring energy appears over a region whose
thickness is of the order of d, it may induce experimental-
ists to a wrong determination of W. Otherwise, the ex-
perimentalist measures a threshold that corresponds to
an x average of this parameter. For A larger than the
threshold value, Eqgs. (67) and (63) allow us to determine
#(x,2).

V. CONCLUSIONS

The wall of orientation induced by surface nonhomo-
geneities in NLC have been theoretically analyzed. In
the case in which the NLC sample may be approximated
as a semi-infinite medium, we have shown that the sur-
face thickness of the wall coincides with the geometrical
nonhomogeneity region in the strong-anchoring hy-
pothesis. On the contrary, for weak-anchoring energy,
the expected variation of the thickness of the wall is of
the order of the thickness of the sample, slightly modified
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by the anchoring energy. The problem connected with
the experimental determination of surface walls in real
samples has been also discussed. The analysis shows that
they are detectable only if the surface nonhomogeneity is
delocalized over a region whose width is of the order of
the sample thickness. The influence of surface nonhomo-
geneities of anchoring energy on the threshold of the
Fréedericksz effect have been analyzed too. Its connec-
tion with the experimental determination of the anchor-
ing energy measured in this manner is meaningful only if
W is nonhomogeneous over a region smaller than the
thickness of the sample.
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